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A numerical method to solve the compressible Navier–Stokes equations around objects of
arbitrary shape using Cartesian grids is described. The approach considered here uses an
embedded geometry representation of the objects and approximate the governing equa-
tions with a low numerical dissipation centered finite-difference discretization. The
method is suitable for compressible flows without shocks and can be classified as an
immersed interface method. The objects are sharply captured by the Cartesian mesh by
appropriately adapting the discretization stencils around the irregular grid nodes, located
around the boundary. In contrast with available methods, no jump conditions are used or
explicitly derived from the boundary conditions, although a number of elements are
adopted from previous immersed interface approaches. A new element in the present
approach is the use of the summation-by-parts formalism to develop stable non-stiff
first-order derivative approximations at the irregular grid points. Second-order derivative
approximations, as those appearing in the transport terms, can be stiff when irregular grid
points are located too close to the boundary. This is addressed using a semi-implicit time
integration method. Moreover, it is shown that the resulting implicit equations can be
solved explicitly in the case of constant transport properties. Convergence studies are per-
formed for a rotating cylinder and vortex shedding behind objects of varying shapes at dif-
ferent Mach and Reynolds numbers.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

A number of numerical methods have been developed to solve fluid dynamical problems around complex geometries uti-
lizing different Cartesian grid-based discretizations. These techniques present two considerable advantages: first, the fluid
dynamics solver can be made very efficient by exploiting the underlying Cartesian grid topology and second, it is very inex-
pensive to incorporate complex objects using an embedded geometry approach in comparison with generating two- or
three-dimensional meshes. These fictitious domain methods, or domain embedding methods, have been introduced by Hy-
man [1] and Saul’ev [2] to solve boundary value problems related to elliptic equations. The theory and application of these
methods to elliptic equations is well developed and include the immersed interface method (IIM) of LeVeque and Li [3–12]
and the distributed Lagrange multiplier (DLM) technique [13,14]. Extensions of these techniques to the second-order wave-
equation [15] and the parabolic heat-diffusion equation [16] have been proposed. In fluid dynamics, a number of methods
have been developed to maximize the advantages of the embedded geometry representation, starting from the immersed
boundary method (IBM) which was further extended and popularized by Peskin [17–21]. In the IBM technique, the coupling
. All rights reserved.
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between a moving boundary and the fluid is modeled using a suitable distributed force over a band of grid cells surrounding
the interface. The IIM and DLM techniques have also been extended to fluid dynamics problems. Most of these applications
are concerned with low to moderate Reynolds number flows for incompressible fluids [22,23] and particulate flows [24]. In
the case of compressible flows, the Ghost fluid method (GFM) [25] uses Eulerian level sets to capture interfaces and Godu-
nov-type upwind discretizations to solve the inviscid Euler equations. Many methods have been developed for viscous
incompressible flow [26–37] and inviscid compressible flow [38–44] but considerably fewer approaches have been devel-
oped for compressible viscous flows [45,46].

The boundary conditions in the IIM at the object boundary, which is arbitrary with respect to the Cartesian grid, alter the
discretization of the governing equations next to the boundary. Specialized formulas are then utilized at these so-called
irregular grid points. In IIM, the boundary conditions are expressed in terms of discontinuous changes, or jumps, in the solu-
tion and its derivatives across the boundary. Thus, the new discretization at the irregular grid points arises without addi-
tional effort if all the jumps are known at the boundary [47,48]. In the more common case, when the boundary
conditions are of Dirichlet or Neumann type, i.e. not given as jumps, one needs to transform the boundary data to derive
the jumps. These are then incorporated in the IIM formulation [49,50]. This problem is not as severe in the IBM method be-
cause the interface is already diffuse and there is some flexibility as to how to implement the closure. The sharp nature of the
interface in the IIM is not as forgiving as in the IBM and usually the jumps derived from Dirichlet conditions result in highly
stiff equations. Stiffness here refers to the singular behavior of the coefficients of the stencils obtained at the irregular points
when the distance between these points to the boundary approaches zero. In formulations utilizing jumps, the stiffness may
be partially obscured by the procedure that determines the jumps from the boundary conditions. In this case, the determi-
nant of the matrix that relates the jumps to the boundary conditions generally approaches zero as the irregular grid points
approach the interface. In general, this behavior cannot be avoided when employing the embedded geometry representation,
since the object boundary is placed at arbitrary locations throughout the domain. Dirichlet data is important in the present
context because no-slip and imposed temperature are conventional boundary conditions for the compressible Navier–Stokes
equations. This difficulty of sharp interface methods is well recognized but its solution has only been partially developed and
it invariably involves ill-conditioned matrices or stiff time integration problems for elliptic or parabolic equations, respec-
tively. The latter can be converted into a problem of the former type by use of implicit or semi-implicit time integration tech-
niques [51–54]. Tryggvason et al. [55] report that several thousand iterations are required for the implicit system of
equations to converge. This particular problem can be addressed in some cases by using special iterative methods
[56,57,47,58] or a splitting technique [59] to separate the problem into a hierarchy of non-stiff problems which can be solved
independently using standard numerical methods. Unfortunately, this becomes cumbersome for systems of nonlinear equa-
tions or when it is impractical to assemble, or partially assemble, the full matrix of the implicit system of equations.

So far, all the methods described above have been developed from the point of view of maximizing accuracy and consid-
erably less effort has been devoted to the understanding of their stability. The stability of these boundary treatments can be
investigated by linearizing the equations and studying the spectrum of the numerical operator, which is usually referred to
as the matrix method, or by using the energy method; a global stability approach [60]. While it is possible to derive condi-
tions under which the linearized equations are stable by either method, it is unclear how to use this information to develop
stable discretizations for arbitrary relative positions of the interface with respect to the mesh. Few studies have considered
the stability of these methods, e.g. high-order finite-difference time-domain methods for Maxwell’s equations [61] and im-
plicit discretizations of the IBM equations [62,63,51,64]. The reason stability has received less attention is possibly that many
studies using embedded methods are concerned with low Reynolds number flows or use upwind discretizations which can
add substantial numerical dissipation. While this appears successful, there are undesirable effects caused by the introduction
of artificial numerical dissipation. For example, the numerics can interfere with the flow physics of interest, e.g. acoustic
waves or turbulence become artificially damped, motivating the interest in non-dissipative treatments. Unfortunately, if
the amount of numerical dissipation is reduced, or removed completely, compressible flows tend to be far less forgiving
and usually even mild numerical instabilities quickly lead to failure of the simulation (appearance of negative density or
pressure). Replacing upwind by centered discretizations removes numerical dissipation but the discretization is usually
unstable. Away from boundaries, this problem has been resolved by using skew-symmetric formulations to preserve stability
[65–68].

In this paper, we partially address the stability problem of an immersed interface method for the compressible Navier–
Stokes equations by utilizing the theory of summation-by-parts (SBP) operators [69,70] to derive a stable immersed interface
approximation for the advection derivatives. Numerical experiments suggest that this approach prevents the appearance of
spurious numerical instabilities, which otherwise create shock-like regions around complex boundaries. Moreover, different
from IIM formulations, the new approach completely eliminates the need to deal with jumps at the object boundary. Finally,
the method is combined with semi-implicit time integration to remove any stiffness present in the operators and the implicit
equations are solved explicitly for the particular case of constant transport properties.
2. Approach and conventions

It is assumed that the governing equations are discretized using a Cartesian mesh, independent of the presence of objects
of arbitrary shape. Although the formulation is presented for a Cartesian uniform mesh, the proposed method will be
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integrated with a patch-based adaptive mesh refinement solver for better resolution control in the examples in Section 5.
The discretization stencils next to an object are then altered only at the so-called ‘irregular’ grid points close to the object
boundary. In two-dimensions, let us denote a function qð~xÞ of the independent variable vector~x ¼ fx; yg and its approxima-
tion at grid locations fxi; yjg by the grid function, qi;j ¼ qðxi; yjÞ, where i; j 2 Z and xi ¼ iDx and yj ¼ jDy. Explicit notation of the
dependence of the function on additional independent variables or parameters will be indicated when necessary, e.g. if the
function or its approximation depend on time. Moreover, constant indices will be omitted when only one index is varying
and there is no ambiguity, i.e. when approximating derivatives with respect to one independent variable.

Fig. 1 shows a sketch of a two-dimensional Cartesian mesh of size fDx;Dyg overlapping an arbitrarily shaped boundary, C,
which is assumed smooth enough so that its characteristic radius of curvature is well resolved by the Cartesian grid. No
sharp turning or bending of the boundary within a grid cell is allowed. This is important since the type of finite-difference
approximation built on the Cartesian mesh can only resolve features that vary on length scales that are equal to or larger
than Dx and Dy. The physical domain, X, is divided into a fluid subdomain, Xþ, and a solid (fictitious fluid) subdomain,
X�, such that X ¼ Xþ [X�. The boundary separating the fluid from the fictitious fluid domain is denoted by @Xþ ¼ C with
coordinates given by~xC. It is presumed that~xC is known and it is at least C0, and therefore it can be parameterized without
difficulty. Each grid point on the finite-difference discretization of the domain can be accessed through the multi-index
I ¼ fi; j 2 Zg. Therefore, a subset of I corresponds to cells that belong to the fluid domain, Iþ ¼ fi; j 2 Z : ðxi; yjÞ 2 Xþg. Fur-
thermore, only second-order accurate finite-difference approximations requiring up to three grid points to approximate
first- and second-order derivatives will be considered. These derivatives are given by the standard formulas
Fig. 1.
interest
@q
@x

����
fd
¼ qiþ1 � qi�1

2Dx
; ð1Þ

@2q
@x2

�����
fd

¼ qiþ1 � 2qi þ qi�1

Dx2 ; ð2Þ

@2q
@x@y

�����
fd

¼
qiþ1;jþ1 � qi�1;jþ1 � qiþ1;j�1 þ qi�1;j�1

4DxDy
: ð3Þ
The subscript fd is used to explicitly indicate the use of standard centered finite-difference formulas. Equivalent formulas
are applied in the other directions, y for two-dimensional problems and y and z for three-dimensional problems. The cells
next to the interface are irregular in the sense that the standard centered stencils, (1)–(3), cannot be employed to calculate
the finite-difference approximations of the derivatives because at least one element of the stencil will be reaching into X�.
However, these irregular cells are a subset of Iþ, denoted by I I ¼ fi; j 2 Iþ : minyC¼yj

dCðxi; yjÞ 6 Dx or minxC¼xi
dCðxi; yjÞ 6 Dyg,

where dCðx; yÞ denotes the distance between a point with coordinates ðx; yÞ and ~xC. The regular points are denoted as the
complement IR ¼ Iþ n I I . Fig. 1 shows an example of a solid–fluid interface with irregular grid points, denoted by I1–I4. Aux-
iliary points arising from the intersection of the Cartesian grid lines passing through these points with the interface~xC are
denoted by Py

1;P
x
2;P

y
2;P

x
3;P

y
3 and Px

4, where the superscript indicates the Cartesian line of intersection, x or y in a two-dimen-
sional grid and the subscript indicates the corresponding irregular point associated with this auxiliary point. In the present
approach, each primary grid line passing through an irregular point in I I is allowed to intersect the boundary only one time.
If this was not the case, the radius of curvature of the interface around this point would be less than the available resolution
Sketch denoting a two-dimensional Cartesian mesh with an embedded interface, C, including the notation utilized to identify different points of
in the discretization.
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or the object involved thin filament-like regions which cannot be resolved by the Cartesian mesh. The distance between Px
I

and its associated irregular point, I, is jgxDxj and the sign of gx is chosen to be negative or positive, depending on whether Px
I

is located to the left or right of I, respectively. Similarly, the distance of Py
I to I is jgyDyj and the sign of gy is negative or po-

sitive, depending on whether Py
I is located below or above I, respectively. A second set of irregular points appear when the

interface boundary,~xC, does not cross the x ¼ xi or y ¼ yj lines but instead it cuts through a diagonal line or corner of a cell.

This set is denoted by IM ¼ fi; j 2 IR : min dCðxi; yjÞ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2

p
g. It can be seen that the set IM matters only for the cor-

rections of cross or mixed derivative approximations since one element of (3) would reach into X�.
The regular grid points involved in the discretization of the governing equations at the irregular grid locations are also

classified depending on their location with respect to I. The points lying on the Cartesian lines passing through I will be re-
ferred to as the regular points and they are denoted byRx

I andRy
I . The regular grid points that belong to the corner of the cell

surrounding I are indicated by Ck
I , where k takes values from the set of {ne, se, nw, sw}. The index k, can only take three out of

the four possible values from this set, otherwise I would be a regular point. Fig. 2 shows the complete set of possible cases in
two-dimensions. In this figure, the irregular points are shown by a large filled circle. All possible cases are depicted in Fig. 2
or can be transformed to these cases by a rotation or reflection. The subscript I denoting the irregular point multi-index has
been dropped in these figures for simplicity. In each case, only those locations that are used by the proposed method are
marked; bending of the interface within a cell such that the Cartesian grid lines are intersected more than once is not al-
lowed. The mesh should be refined if this were to happen. Furthermore, the remaining regular points in Xþ, where the stan-
dard centered finite-difference method (FD) is applied without corrections, are not marked. Case (a), (b) and (c) contain only
a b c

d e

g

f

Fig. 2. Elementary cells depicting all basic boundary and cell intersections.
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one boundary intersection with the primary grid lines, while case (b), (e) and (f) contain two. Special care must be employed
with case (g) which only affects the approximation of mixed derivatives.

The proposed method is formulated using corrections to the standard finite-difference formulas at the irregular grid
points [71,47,48], such that
@q
@x

����
ir
¼ @q
@x

����
fd
þ @q

@x

� �
cr
; ð4Þ
where ir denotes the approximation at the irregular grid point and ½ �cr denotes the correction with respect to the standard
finite-difference approximation. In the first stage of the fluid dynamics solver, the governing equations are discretized ignor-
ing the presence of an embedded boundary. In the second stage, the system of equations is updated by correcting the dis-
cretization at the irregular points. Centered finite-difference formulas are employed to ensure that artificial numerical
dissipation is not introduced by the discretization in the bulk of the domain and this is the reason the approach is termed
a low numerical dissipation method. This applies primarily to the approximation of the first-order derivatives in the advec-
tion terms of the Navier–Stokes equations. Centered differences are also used for the second-order derivatives, appearing in
the viscous and heat conduction terms, to ensure that these approximations are parabolic. Obviously these finite-difference
approximations cannot be applied at the irregular points, see Fig. 1.

The presence of the boundary and type of boundary conditions applied on the boundary interface need to be appropri-
ately treated by the numerical approximation. For example, the approach of [48] gives
@q
@x

����
ir
¼ @q
@x

����
fd
� 1

2Dx

X2
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Dx2

X3

l¼0
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½qðlÞ�; ð6Þ
where the ‘jumps’ are defined, e.g. in the x-direction, by
½qðnÞ� ¼ qðnÞþ � qðnÞ� ¼ lim
x!xC ;

x2Xþ

@nq
@xn
� lim

x!xC ;
x2X�

@nq
@xn

; ð7Þ
where qðnÞþ denotes the value of nth derivative of qðxÞ at xC, as one approaches it from the fluid side and qðnÞ� is the value
reached from the solid side. A straight forward implementation of these corrections is achieved when all the jumps appear-
ing in (5) and (6) are known explicitly. While this is possible for some problems, it is not generally the case for Dirichlet type
boundary conditions, e.g. no-slip boundary condition, or Neumann conditions, e.g. heat flux, since only some of the jumps are
known a priori. Despite this inconvenience, several methodologies have been proposed to recover the jumps from the bound-
ary conditions themselves [50,10] so that (5) and (6) can be used. Note that the concept of corrections is not dependent on
the use of jumps. For example, the corrections can be determined by other means, e.g. using more general unequally spaced
finite-difference formulas [72,73]. This is the approach pursued in the present method. We restrict our approach to the com-
pressible Navier–Stokes equations using Dirichlet boundary conditions, which correspond to the boundary conditions of ‘no-
slip’ for the velocity and imposed temperature. The boundary condition for the density, which requires a different treatment,
follows the general requirements for well-posedness of the Navier–Stokes equations [74]. Finally, to complete the specifica-
tion of the problem, it is assumed that the region inside the solid objects are filled with a fluid of constant properties, i.e.
fixed density, pressure and zero velocity.
3. Spatial derivatives at irregular grid points

The Navier–Stokes equations involve two types of spatial derivatives. First-order derivatives in the advection terms and
second-order derivatives, both diagonal and mixed, in the viscous and thermal conduction terms. Ideally, all approximating
stencils should be stable and uniformly non-stiff, i.e. independent of the location of the interface with respect to the location
of the Cartesian mesh. Unfortunately, it is not always possible to achieve this objective using minimal-width stencils; stiff-
ness is just a mathematical manifestation of the rigidity of the boundary condition, e.g. no amount of force exerted by the
fluid can deform a rigid solid. Therefore, one faces the problem of constructing stable and non-stiff discretization stencils for
the spatial derivatives. Stiffness is often overcome by using implicit or semi-implicit time integration methods. Unfortu-
nately, solving large nonlinear systems of implicit equations, e.g. using iterative methods, is not always computationally
practical. To avoid these difficulties, a compromise is achieved in this paper by approximating the first- and second-order
derivatives with conceptually different approaches.

A low-dissipation compressible flow formulation usually requires rewriting the advection terms in a form that is dis-
cretely stable, known loosely as the skew-symmetric form (strictly speaking, this is incompressible terminology). This form
of the equations, which is equivalent in the continuum case but is more suitable for centered finite-difference stencils,
increases the number of first-order derivative operators in the governing equations; see for example [68] for several possible
forms. In two-dimensions, see Section 4.2, the conservative equations require a minimum of eight first-order spatial
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derivatives while the stable skew-symmetric form requires 16 (assuming maximum reutilization of terms). Therefore, it is
preferable to use non-stiff first-order derivative stencils to avoid having to deal with this problem in the time integration
stage; which will otherwise result in a fully coupled implicit system of equations. In the case of the two-dimensional formu-
lation of the viscous and heat conduction terms there are only six diagonal second-order derivatives and two mixed deriv-
atives (after developing all the terms). These terms appear linearly in the conservation equations and therefore a stiff
approximation of these terms is easily handled at a later stage by a semi-implicit time integration method. Finally, the for-
mulation of the mixed derivatives remain an unresolved issue that the proposed approach will handle by well known least-
squares methods.

The adopted methodology is in accordance with the development of an efficient two-dimensional approach that can eas-
ily be extended to the three-dimensional case without new particular developments. Therefore, focusing on strictly Cartesian
closures is favored over more isotropic approaches which could potentially result in high computational overheads owing to
the complex topologies that will arise with three-dimensional boundaries.

3.1. First-order spatial derivative

The objective in this section is the design of an approximation for the first-order spatial derivative that is stable, at least
first-order accurate and involves stencil coefficients that are not stiff, i.e. they are uniformly bounded with respect to the
distance of the interface to the location of the irregular grid point. This is the principal novelty of the proposed method
for the compressible Navier–Stokes equations. In order to prevent stiff coefficients in the stencil, the approximation at
the irregular points must involve at least three points and can only be of first-order accuracy. Certainly, it is possible to derive
a second-order accurate stencil using just two points, one regular and one irregular, and the boundary value using unequally
spaced (general) finite-differences. Unfortunately, this stencil has stiff coefficients. Alternatively, a family of non-stiff stencils
can be obtained by reducing the order of accuracy of the approximation. In this case, it is found that most of these stencils are
unstable even for the linear first-order hyperbolic equation.

To address this stability problem, we employ the theory of operators satisfying the SBP property [75,69]. Let us consider
the grid arrangement sketched in Fig. 3 for the approximation of the first-order derivative of the one-dimensional Cauchy
problem
@q
@t
þ a

@q
@x
¼ 0; ð8Þ
in 0 6 x; t, for a > 0 with boundary and initial conditions given by qðx ¼ 0; tÞ ¼ qbcðtÞ for t P 0 and qðx; t ¼ 0Þ ¼ qoðxÞ, for
0 6 x, respectively. The semi-discrete approximation of (8) for the grid depicted by Fig. 3 is given by
P
@~q
@x
¼ 1

Dx
Q~q; ð9Þ
where Dx is the mesh spacing between the uniform-spaced nodes such that the numerical approximation of the first-order
spatial derivative is D1 ¼ P�1Q . The function qðx; tÞ is presumed known at the nodal locations qjðtÞ ¼ qðxj; tÞ, and the vector
containing all the unknowns is defined as ~q ¼ fqbc; q1; q2; . . .g, with
xj ¼
0 j ¼ 0;
ð�gþ j� 1ÞDx j > 0;

�
ð10Þ
for j 2 N0. In this formulation g < 0 denotes the offset from the boundary in terms of Dx where the irregular point, which
requires a special stencil for the embedded geometry approach, is located. The value of g is chosen here to be negative to
indicate that the irregular point is to the right of the boundary, whereas a positive value indicates the opposite. This conven-
tion is used to simplify the implementation of the immersed interface method in Section 4.2. The matrices P and Q have ele-
ments corresponding to the discrete stencil. The matrix P is symmetric positive definite and Q is skew-symmetric except for
the corner elements [75]. One can show that the energy norm E ¼ a�1Dx ~qT P~q is discretely conserved, apart from boundary
terms, and obeys the equation
d _E
d_t
¼ �~qðQ T þ Q Þ~q ¼ q2

bcðtÞ; ð11Þ
where Q T þ Q ¼ diagð�1;0;0; . . .Þ. Therefore, the total energy of the system is bounded and grows only by that amount
provided by the boundary value [75,69]; implying asymptotic stability of the semi-discrete approximation to (8). Note that
while this strategy carries over to nonlinear hyperbolic problems, it does not give a general proof of stability for other
Fig. 3. Sketch of the unequally spaced boundary mesh ðg < 0Þ.
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equations involving higher derivatives or multidimensional equations (unless the discrete operators can be symmetrized by
the same matrix). Nevertheless, experience has shown that numerical stability is usually dominated by the discretization of
the advection terms in the Navier–Stokes equations, hence the choice of (8). Although the formal derivation of the stencil
assumes that a is constant, when the actual derivative operator is constructed, D1, one can use it with variable a or with non-
linear functions, e.g. advection terms of the Navier–Stokes equations. If the solution is sufficiently smooth (well resolved and
away from shocks), the stability property of the stencil is still preserved, shown by linearization around a base solution, cf.
[76,60].

The matrices P and Q for a second-order accurate approximation in the interior of the domain are given by
P ¼

p11 p12 0 . . .

p12 p22 0 . . .

0 0 1 . . .

: : : . . .

0
BBB@

1
CCCA; Q ¼

� 1
2 q12 0 0 . . .

�q12 0 1
2 0 . . .

0 � 1
2 0 1

2 . . .

: : : : . . .

0
BBB@

1
CCCA: ð12Þ
The unspecified coefficients p11; p12; p22 and q12 are chosen to satisfy the order of accuracy conditions at the boundary and
the positive definite property of P. The accuracy conditions are obtained by imposing that the approximations of the deriv-
ative of the polynomial function f ðx; xjÞ ¼ ðx� xjÞn for n ¼ 0;1 are exact at nodes j ¼ 0;1. These conditions are simplified by
using the vectors~e0 ¼ ½0;�g;�gþ 1; . . .�,~e1 ¼ ½g;0;1; . . .�, and ~1 ¼ ½1;1;1; . . .�, yielding
fQg0
~1 ¼ 0; ð13Þ

fQg1
~1 ¼ 0; ð14Þ

fPg0
~1 ¼ fQg0~e

0; ð15Þ
fPg1

~1 ¼ fQg1~e
1; ð16Þ
where the notation f:gi indicates the ith row of the matrix. The solution of this system of equations gives
p11 ¼ �p12 �
g
2
; ð17Þ

p22 ¼ �p12 þ
ð1� gÞ

2
; ð18Þ

q12 ¼
1
2
; ð19Þ
where p12 is a free parameter. Evaluation of the complete derivative approximation, D1 ¼ P�1Q , shows that stiffness is pres-
ent in the determinant of P. It is imperative to avoid detðPÞ � gm for g! 0, where m 2 N. In our case,
detðPÞ ¼ p12 g� 1
2

� �
� 1

4
gð1� gÞ; ð20Þ
and the particular value to avoid is p12 ¼ 0. To complete the analysis, the eigenvalues of P are given by
k� ¼
1� 4p12 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16p2

12

q
� 2g

4
: ð21Þ
It can be verified that k� > 0 when p12 6 0 if g < 0, which is the case in the present analysis. Any value of p12 less than
zero will suffice including, as indicated by a reviewer, the case p12 ¼ 0 which leads to a well behaved stencil since the factor
proportional to g in the denominator, detðPÞ, is cancelled by the numerators which are also proportional to g. In this case, the
factor of the first element of the sum defining the energy norm E in (11) is �g=2. The particular stencil that has been used
satisfactorily in Section 5 uses p12 ¼ �1=2 and gives the following approximation of the first-order derivative approximation
at the irregular points,
@q
@x
� ð1� gÞq2 þ q1 þ ðg� 2Þqbc

Dxðg2 � 3gþ 1Þ ; ð22Þ
which is not stiff since the roots of the denominator are all positive, g ¼ ð3�
ffiffiffi
5
p
Þ=2. Moreover, one can verify that this for-

mula reduces to the two-point biased stencil for g ¼ 0. Although we experimented with other values of p12, obtaining indis-
tinguishable results, a rational approach to select an optimal value of this parameter remained elusive.

The present approach differs substantially from a popular approach used with SBP operators for equally spaced grids that
employs a penalty-based technique to enforce the boundary conditions [70]. In that case, qbc is kept as an element of the
vector of unknowns,~q, and a penalty term is added to the governing equations to drive the value of the node at the boundary
toward the boundary condition. In principle, there is no impediment to the use of the penalty approach [70]. One drawback
of this approach is that additional storage and computational cost is incurred since one has to add an additional set of ele-
ments corresponding to the floating values of the vector of state at the boundary, which are driven by the penalty method to
the corresponding boundary condition, and solve for the governing equations there. In practice, the main difficulty is that the
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Cartesian solver does not have a mechanism to discretize the governing equations at the boundary intersections and
addressing this requires modifying the original solver beyond just using a correction stage. In the present approach, the
row associated with qbc is discarded once the matrix D1 is determined since qbc is not part of the vector of unknowns and
the particular formula in (22) is used instead at the irregular grid point. This approach, where the equations are segregated
at the boundary, does not automatically inherit the energy-stability properties of the SBP operators. Nevertheless, it is shown
next that the present approach retains the stability of the original method.

Eliminating qbc from the vector of unknowns modifies the energy estimate (11). To derive the energy estimate that applies
in this case consider the new vector of state ~q ¼ fq1; q2; . . .g and the elements of the approximation of the first-order deriv-
ative, given by
D1 ¼

d11 d12 0 0 . . .

� 1
2 0 1

2 0 . . .

0 � 1
2 0 1

2 . . .

: : : : . . .

0
BBB@

1
CCCA; ~b ¼

d10

0
0
:

0
BBB@

1
CCCA; ð23Þ
where
d10 ¼
ðg� 2Þ
M

; d11 ¼
1
M
; d12 ¼

ð1� gÞ
M

; M ¼ ðg2 � 3gþ 1Þ; ð24Þ
are the coefficients in (22). The approximation to (8) is now given by
d~q
dt
þ 1

Dx
ðD1~qþ~bqbcÞ ¼ 0: ð25Þ
Lets define a new energy norm, E� ¼ a�1Dx ~qT H~q, with
H ¼
w 0
0 I

� �
; ð26Þ
where w is a positive scalar, to be determined, and I is the identity matrix. Manipulating (25) in the usual manner, to arrive at
an equation for E�, gives
dE�

dt
þ~qTðHD1 þ DT

1HÞ~qþ 2qbc ~q
T H~b ¼ 0: ð27Þ
The only way to eliminate the terms involving q2 in
HD1 þ DT
1H ¼

2wd11 wd12 � 1
2 0 0 . . .

wd12 � 1
2 0 0 0 . . .

0 0 0 0 . . .

: : : : . . .

0
BBB@

1
CCCA; ð28Þ
is to choose
w ¼ 1
2d12

¼ M

2ð1� gÞ > 0; ð29Þ
which reduces (27) to
dE�

dt
þ 2w d11q2

1 þ qbcq1d10
	 


¼ 0: ð30Þ
Using the expressions for d11; d10;w and completing the square, gives
_E�

_t
¼ �ðq1 � ð1� g=2ÞqbcÞ

2

1� g
þ ð1� g=2Þ2

1� g
q2

bc: ð31Þ
Eq. (31) establishes the stability of the approximation since the first term on the right-hand side is always negative and,
therefore, cannot induce growth in E�. The second term in the right-hand side is due to the boundary condition and it is anal-
ogous to the corresponding term in (11). This completes the proof that segregating the approximation at the boundary from
the original SBP stencil retains the stability property in the new energy norm E�.

3.2. Second-order spatial derivative

The theory behind the approximation of the first-order derivative described in the previous section could be applied to
produce stable second-order derivative approximations [77]. However, it is not possible to derive non-stiff formulas for



K. Karagiozis et al. / Journal of Computational Physics 229 (2010) 701–727 709
stencils using only three points at irregular points; for this case at least four points are required. This implies wider stencil
approximations than those investigated here are needed and an extension of [77] to non-uniform grid spacing is necessary to
remove stiff coefficients. Unfortunately, our attempts at this goal have been unsuccessful so far. Therefore, it was found that
unequally spaced stencils based on the classical Taylor series method worked well when their stiff coefficients, as g! 0, are
coupled with a semi-implicit time integration method.

Using the conventions of the previous section, the unequally spaced finite-difference formula evaluated at an irregular
point is given by
@2q
@x2

�����
ir

¼ 2
ðq2 � q1Þ

Dx2 ð1� gÞ þ 2
ðq1 � qbcÞ

Dx2gð1� gÞ : ð32Þ
It is expected that this formula will suffer order of accuracy degradation, from second to first, when g is not of order
�1þ OðDx=LÞ, where L is a characteristic spatial dimension. Therefore, (32) is usually at best first-order accurate in Dx for
arbitrary g [72]. This is compatible with (22) and comparable to other immersed interface methods.

From the implementation point of view, (32) is decomposed into non-stiff and stiff parts, according to
@2q
@x2

�����
ir

¼ @
2q
@x2

�����
ns

þ @
2q
@x2

�����
st

; ð33Þ
where the non-stiff part is given by
@2q
@x2

�����
ns

¼ 2
ðq2 � q1Þ

Dx2 ð1� gÞ ; ð34Þ
and the stiff part is given by
@2q
@x2

�����
st

¼ Sx

g
ðq1 � qbcÞ; ð35Þ
with
Sx ¼
2

Dx2ð1� gÞ : ð36Þ
This decomposition will be used later to manipulate the semi-implicit time integration method and transform it into an
overall explicit method.

3.3. Mixed spatial derivatives

The approach implicitly followed throughout the development of the approximations is to consider the function qðx; yÞ
around irregular grid points as a uniformly valid Taylor expansion that is accurate to third-order, so that its first- and sec-
ond-order derivatives are accurate to second- and first-order in Dx, respectively. In other terms, it was assumed that
qðx; yÞ ¼ qir þ x0
@q
@x

����
ir
þ y0

@q
@y

����
ir
þ 1

2
x02
@2q
@x2

�����
ir

þ 1
2

y02
@2q
@y2

�����
ir

þ x0y0
@2q
@x@y

�����
ir

þ OðDx2Dy;DxDy2Þ; ð37Þ
where x0 ¼ x� xi and y0 ¼ y� yj, is valid over each irregular grid cell, including the general boundary section cutting through
it. The coefficients of this two-dimensional interpolant correspond to the different derivatives developed previously, except
for the last one.

Eq. (37) could be used, in principle, in two ways. One can assume that the coefficients of the derivatives are unknown and
evaluate the polynomial in x0 and y0 at specific locations around an irregular grid cell to generate a linear system of equations
whose solution is the approximations to the derivatives. If the number of equations is equal to the number of coefficients, the
unequally spaced finite-difference formulas are recovered, similar to [10]. However, these have the undesirable stiff, � g�1,
behavior inherited and must be avoided. Another approach is to choose more colocation points to evaluate (37) and solve the
overly constrained problem by a least-squares method. This does not generally lead to stiff stencils but it was found that
these stencils do not necessarily result in stable discretizations when applied to the first- or second-order derivatives.
Two qualitatively different results were obtained using the least-squares method for all the derivatives. In one case, irregular
grid stencils would result in unstable stencils and in another case the stencils were asymptotically stable but generated spu-
rious modes which the compressible Navier–Stokes equations could not damp sufficiently fast to prevent the formation of
what appeared to be shocks next to the boundaries. These spurious modes corresponded to imaginary eigenvalues in the
second-order unmixed derivatives. Ideally, the eigenvalues should be all real and negative, however, the least-squares meth-
od cannot enforce this property. It is for this reason that it was first preferred to approximate the first-order derivative by
constructing a stable approximation at irregular points, then construct the unequally spaced finite-difference approximation
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of the second-order derivative, which is stable for a diffusion problem, and leave the mixed derivatives to be approximated
separately using the least-squares method.

Thus, the approach employed here uses the least-squares technique to determine the mixed spatial derivative by evalu-
ating (3) at all diagonal regular grid nodes available as well as using the boundary condition at the intersection points Px and
Py. A similar technique was employed by Wiegmann and Bube [48] for elliptic problems and by Kirshman and Liu [78] to
solve the Euler equations using embedded Cartesian meshes. In the present approach, only the mixed derivatives, which
are absent in the inviscid Euler equations, are computed using a least-squares method. This solution uses all the available
information around the irregular cell to estimate the mixed derivative and, given that the system is over-constrained, no stiff
coefficients are recovered. The approximation of the mixed spatial derivative was obtained, for the case of two intersection
points of the Cartesian grid lines with the interface, by constructing the vectors
~a ¼ x0c1
y0c1
; x0c2

y0c2
; . . . ; x0p1

y0p1
; x0p2

y0p2

h i
; ð38Þ
and
~b ¼ b x0c1
; y0c1

� �
;b x0c2

; y0c2

� �
; . . . ;b x0p1

; y0p1

� �
; b x0p2

; y0p2

� �h i
; ð39Þ
where
bðx0; y0Þ ¼ q� qir � x0
@q
@x

����
ir
� y0

@q
@y

����
ir
� 1

2
x02
@2q
@x2

�����
ir

� 1
2

y02
@2q
@y2

�����
ir

: ð40Þ
The subscripts c and p refer to the corner cells C and boundary points P, as seen in Fig. 2, respectively. These vectors can then
be used in the normal equations of the least-squares for the mixed derivative, giving
@2q
@x@y

�����
ir

¼
~aT~b
~aT~a

: ð41Þ
The coefficients of the stencil in (41) is never stiff if the system of equations is over-constrained, sizeð~aÞ ¼ sizeð~bÞ > 1.

3.4. Time integration

Explicit time integration combined with the potentially large coefficients, i.e. (35), in the second-order derivatives present
in the viscous and thermal conduction terms of the compressible Navier–Stokes equations may require excessively small
time steps. One approach to deal with this stiffness is to use implicit or semi-implicit time integration methods. Of all avail-
able implicit methods, a certain balance must be achieved in terms of complexity and computational cost in most realistic
applications and often only a few choices make practical sense. In our case, only few terms of the discretized governing equa-
tions involve the problematic terms � g�1. Therefore, it appears that a semi-implicit method is the most advantageous ap-
proach in terms of the computational cost for our system. If we restrict consideration to multi-stage methods, the use of
centered stencils in the bulk of the domain dictates that at least a third-order accurate Runge–Kutta scheme must be used.
Consequently, a third-order accurate additive semi-implicit Runge–Kutta (ASIRK) method was used to integrate the govern-
ing equations in time, since the stiff and non-stiff terms are known beforehand. Those terms that do not contain the numer-
ical stiff behavior are integrated explicitly while those terms that contain it are integrated implicitly.

Let us consider the system of equations
dq
dt
¼ f ðq; tÞ þ gðq; tÞ; ð42Þ
where f and g denote the nonstiff and the stiff terms in the governing equation, respectively. Time integration methods for
this type of split systems are discussed in detail by Yoh and Zhong [79]. Several methods are available depending on whether
g is autonomous in time or not and on the desired order of accuracy. The third-order accurate method labeled SIRK-3A by
Yoh and Zhong [79] was used in this work, given by
qnþ1 ¼ qn þw1k1 þw2k2 þw3k3; ð43Þ
and
k1 ¼ Dt½f ðqn; tn þ r1DtÞ þ gðqn þ d1k1Þ�; ð44Þ
k2 ¼ Dt½f ðqn þ b21k1; tn þ r2DtÞ þ gðqn þ c21k1 þ d2k2Þ�; ð45Þ
k3 ¼ Dt½f ðqn þ b31k1 þ b32k1; tn þ r3DtÞ þ gðqn þ c31k1 þ c32k2 þ d3k3Þ�; ð46Þ
where Dt is the time step size, and bij and di are coefficients that have been determined along with wi to ensure third-order
accuracy and stability of the numerical method. These coefficients are reproduced here from [79], giving
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w1 ¼ 1
8 ; w2 ¼ 1

8 ; w3 ¼ 3
4 ;

b21 ¼ 8
7 ; b31 ¼ 71

252 ; b32 ¼ 7
36 ;

c21 ¼ 5589
6524 ; c31 ¼ 7691

26;096 ; c32 ¼ � 26;335
78;288 ;

d1 ¼ 3
4 ; d2 ¼ 75

233 ; d3 ¼ 65
168 ;

r1 ¼ 0; r2 ¼ b21; r3 ¼ b31 þ b32:

ð47Þ
The key feature of these implicit methods is that the ki coefficients are defined implicitly only through g. If g is simple
enough or involves localized interactions with neighboring grid cells, it is possible to explicitly determine the ki, i.e. resulting
in an explicit method, while retaining the stability properties of the time integration method. This feature of the proposed
combined methodology is discussed below.

4. Application to the compressible Navier–Stokes equations

4.1. Governing equations

The governing equations of a two-dimensional compressible flow in conservation form for mass, momentum and energy
are given by
@~q
@t
þ @

~f kð~qÞ
@xk

¼ 0; ð48Þ
where the vector of state is defined as
~q ¼ ðq;m1;m2; EÞT; ð49Þ
with m1 ¼ qu1 ¼ qu;m2 ¼ qu2 ¼ qv , where the density is denoted by q, the velocity components by uk and the state rela-
tionship for the total energy E is given by
E ¼ p
c� 1

þ 1
2
qukuk; ð50Þ
where c is the specific heat capacity ratio, p is the pressure and repeated indices imply summation. The system of equations
is closed thermodynamically by the equation of state
p ¼ qRT; ð51Þ
where R is the gas constant and T is temperature.
The flux tensor can be further decomposed into inviscid and viscous components, according to
~f kð~qÞ ¼~f inv
k ð~qÞ þ~f vis

k ð~qÞ; ð52Þ
and defined as
~f inv
k ð~qÞ ¼

quk

qu1uk þ d1kp

qu2uk þ d2kp

ðEþ pÞuk

0
BBB@

1
CCCA; ~f vis

k ð~qÞ ¼

0
�r1k

�r2k

gk � rkjuj

0
BBB@

1
CCCA: ð53Þ
The deviatoric Newtonian viscous stress tensor is defined as
rik ¼ l @uk

@xi
þ @ui

@xk

� �
� 2

3
@uj

@xj
dik

� �
; ð54Þ
and the heat conduction is given by
gk ¼ �k
@T
@xk

: ð55Þ
The shear viscosity, l, and thermal conductivity, k are assumed known constants.

4.2. Numerical discretization

The conservation equations (48), are discretized using a centered finite-difference approximation after rewriting the
operators in skew-symmetric and discrete internal energy conservation form, for the momentum and energy equations,
respectively. This approach has been shown to lead to enhanced numerical stability when the numerical method is not dis-
sipative [68] and it has been used successfully in simulations of the Navier–Stokes equations as well as in large-eddy sim-
ulations [80]. The resulting discrete equations can be expressed as
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d~Q
dt
¼ Nð~QÞ þ Lð~QÞ; ð56Þ
where ~Q denotes the vector of the discretized conserved variables ~Qi;jðtÞ ¼~qðxi; yj; tÞ. The right-hand side of (56) has been
split into the contribution from the advection terms,Nð~QÞ, and the contribution from the viscous and heat conduction terms,
Lð~QÞ. The advection term is discretized according to the skew-symmetric form [68], giving
N q ¼ �ðDxm1 þ Dym2Þ; ð57Þ

N 1 ¼ �
1
2
ðDxðm1u1Þ þ Dyðm1u2Þ þm1Dxu1 þm2Dyu1 � u1N qÞ; ð58Þ

N 2 ¼ �
1
2
ðDxðm2u1Þ þ Dyðm2u2Þ þm1Dxu2 þm2Dyu2 � u2N qÞ; ð59Þ

N E ¼ �
1
2
ðDxðm1eÞ þ Dyðm2eÞ þm1Dxeþm2Dye� eN q þ u1ðDxðm1u1Þ þ Dyðm1u2ÞÞ þ u2ðDxðm2u1Þ þ Dyðm2u2ÞÞ

þm1ðu1Dxu1 þ u2Dyu1Þ þm2ðu1Dxu2 þ u2Dyu2ÞÞ � pðDxu1 þ Dyu2Þ � u1Dxp� u2Dyp; ð60Þ
where e ¼ E=q� 1
2 ðu2 þ v2Þ and the viscous and heat conduction terms are discretized in the developed form,
Lq ¼ 0; ð61Þ

L1 ¼ l 4
3

Dxxu1 þ Dyyu1 þ
1
3

Dxyu2

� �
; ð62Þ

L2 ¼ l 4
3

Dyyu2 þ Dxxu2 þ
1
3

Dxyu1

� �
; ð63Þ

LE ¼ kðDxxT þ DyyTÞ þ u1L1 þ u2L2 þ r11Dxu1 þ r12ðDxu2 þ Dyu1Þ þ r22Dyu2: ð64Þ
The conservative form of the Navier–Stokes equations and this particular form are equivalent in the continuous limit but
the present scheme has good stability properties [68]. Unlike the incompressible equations, it has not been possible to prove
discrete stability of the nonlinear equations for all time. It is possible to prove discrete stability for the constant (frozen) coef-
ficients case [81] using SBP operators, which assuming the solution is smooth implies stability for the nonlinear case [82].
Unfortunately, this is only a necessary condition.

In the previous formulas, the derivative operators are defined according to
Dx ¼
@
@x

��
fd in IR;

@
@x

��
ir in I I;

(
ð65Þ
where the regular finite-differences approximation to the first-order derivative are given by (1) and the irregular is given by
(22). The same decomposition applies to all other derivatives: Dy;Dxx;Dyy and Dxy.

4.3. Interface corrections

In the current implementation, as is common in IIM, N and L are first computed using the regular finite-difference for-
mulas, first case in (65), at all mesh points of the domain. No distinction is applied to different grid nodes at this stage. In a
second stage, only those terms which are affected by the presence of the fluid–solid interface are updated using corrections.
In the present method, all possible topologies encountered by the Cartesian mesh are shown in Fig. 2. A similar approach is
commonly pursued in the incompressible case, e.g. [31].

Lets decompose the right-hand side of (56) into
N ¼ N fd þN cr
; L ¼ Lfd þ Lcr; ð66Þ
where N fd and Lfd correspond to (57)–(59), (60), (62)–(64), respectively, evaluated using the standard centered finite-differ-
ence formulas, first case in (65). The corrections to the advection terms at the irregular points only, I I , are now given
by
N cr
q ¼ � Dcr

x m1 þ Dcr
y m2

� �
; ð67Þ

N cr
1 ¼ �

1
2

Dcr
x ðm1u1Þ þ Dcr

y ðm1u2Þ þm1Dcr
x u1 þm2Dcr

y u1 � u1N cr
q

� �
; ð68Þ

N cr
2 ¼ �

1
2

Dcr
x ðm2u1Þ þ Dcr

y ðm2u2Þ þm1Dcr
x u2 þm2Dcr

y u2 � u2N cr
q

� �
; ð69Þ

N cr
E ¼ �

1
2

Dcr
x ðm1eÞ þ Dcr

y ðm2eÞ þm1Dcr
x eþm2Dcr

y e� eN cr
q þ u1 Dcr

x ðm1u1Þ þ Dcr
y ðm1u2Þ

� �
þ u2 Dcr

x ðm2u1Þ þ Dcr
y ðm2u2Þ

� ��
þm1 u1Dcr

x u1 þ u2Dcr
y u1

� �
þm2 u1Dcr

x u2 þ u2Dcr
y u2

� ��
� p Dcr

x u1 þ Dcr
y u2

� �
� u1Dcr

x p� u2Dcr
y p; ð70Þ
where
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Dcr
x ¼

@

@x

����
ir
� @

@x

����
fd
;

and similarly for the other derivatives. The corrections involving e and p deserve special attention. For imposed temperature
at the boundary, the case considered here,
e ¼ p
qðc� 1Þ ¼

RT
c� 1

;

is known and the corrections can always be evaluated. The case for the pressure is different since the density is not known at
the boundary. Two obvious choices are possible since the pressure gradient term will not be integrated implicitly. In the first
case,
Dcr
x p ¼ Dcr

x ðqRTÞ; ð71Þ
while in the second case the pressure corrections are determined according to the chain rule, giving
Dcr
x p ¼ RTDcr

x qþ qRDcr
x T; ð72Þ
and similarly for the y direction derivative. In the second case, the density correction is obtained by extrapolation of the den-
sity inside the domain, Xþ, from the known data in the neighborhood of the interface along the corresponding Cartesian
direction. This approach is fully consistent with the boundary conditions of the compressible Navier–Stokes equations
[74]. The linear extrapolation of the density to Px involves the value at the irregular point and Rx, and similarly the extrap-
olation to Py usedRy. Both approaches were tested and produced indistinguishable results, both in terms of convergence and
conservation. Therefore, the first approach (71), is used throughout the simulations presented in Section 5.

Finally, the correction to the viscous and heat conduction terms are
Lcr
q ¼ 0; ð73Þ

Lcr
1 ¼ l 4

3
Dcr

xxu1 þ Dcr
yyu1 þ

1
3

Dcr
xyu2

� �
; ð74Þ

Lcr
2 ¼ l 4

3
Dcr

yyu2 þ Dcr
xxu2 þ

1
3

Dcr
xyu1

� �
; ð75Þ

Lcr
E ¼ k Dcr

xxT þ Dcr
yyT

� �
þ u1Lcr

1 þ u2Lcr
2 þ rcr

11Dfd
x u1 þ rcr

12 Dfd
x u2 þ Dfd

y u1

� �
þ rcr

22Dfd
y u2 þ rfd

11Dcr
x u1

þ rfd
12 Dcr

x u2 þ Dcr
y u1

� �
þ rfd

22Dcr
y u2 þ rcr

11Dcr
x u1 þ rcr

12 Dcr
x u2 þ Dcr

y u1

� �
þ rcr

22Dcr
y u2; ð76Þ
which can easily be determined since the only part of the dissipation function in the energy equation is quadratic, and the
remaining terms are linear.

4.4. Time integration

As discussed previously, the correction for second-order derivatives can be stiff depending on the relative position of the
interface with respect to the Cartesian mesh, see (32). This numerical stiffness is addressed by separating the stiff component
of Dcr

xx and Dcr
yy explicitly. First, let Lcr be split according to
Lcr ¼ Lns þ Lst; ð77Þ
where ns stands for the non-stiff terms of the irregular points (34), and st represents all the stiff contributions, (35). The stiff
terms are given by
Lst
q ¼ 0; ð78Þ

Lst
1 ¼ l 4

3
Sx

gx
u1 � uP

x

1 ðtÞ
	 


þ Sy

gy
u1 � uP

y

1 ðtÞ
	 
 !

; ð79Þ

Lst
2 ¼ l 4

3
Sy

gy
u2 � uP

y

2 ðtÞ
	 


þ Sx

gx
u2 � uP

x

2 ðtÞ
	 
 !

; ð80Þ

Lst
E ¼ k

Sx

gx
T � TP

x
ðtÞ

� �
þ Sy

gy
T � TP

y
ðtÞ

� � !
þ u1Lst

1 þ u2Lst
2 : ð81Þ
Eqs. (78)–(81) constitute the implicit terms in (42), where the boundary conditions are involved. Note that the Dirichlet
boundary conditions appear explicitly now and they must be evaluated at the locations Px and Py, and need not be equal.
This distinction disappears for the no-slip boundary condition of non-moving interfaces and isothermal walls.

Inspection of the form of the semi-implicit time integration method and the structure of (78)–(81) shows that one can
explicitly solve what appears to be a nonlinear system of implicit equations. First, note that the resulting implicit equations
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are local, i.e. the values at each irregular node can be determined independently of those at any other location. Implicit time
integration used in incompressible formulations also exhibit partial locality where only those equations involving the irreg-
ular points need to be solved implicitly to remove a stringent stability constraint [53]. In the present case, the implicit cou-
pling is strictly local and does not involve neighboring points. Grouping together the stiff terms involving Sx and Sy, which
behave as g�1

x and g�1
y , respectively, and defining the generalized inverse values
~g�1
x ¼

0; if gx ¼ 0
g�1

x ; otherwise

�
; ~g�1

y ¼
0; if gy ¼ 0

g�1
y ; otherwise

(
: ð82Þ
allows (78)–(81) to be rewritten as
Lst ¼ ~g�1
x Gx þ ~g�1

y Gy; ð83Þ
where Gx and Gy are vectors containing the coefficients of the stiff operators Sx and Sy, given by
Gx;1 ¼
4
3
lSx u1 � uP

x

1 ðtÞ
	 


; ð84Þ

Gx;2 ¼ lSx u2 � uP
x

2 ðtÞ
	 


; ð85Þ
Gx;E ¼ kSxðT � TP

x
ðtÞÞ þ u1Gx;1 þ u2Gx;2: ð86Þ
and
Gy;1 ¼ lSy u1 � uP
y

1 ðtÞ
	 


; ð87Þ

Gy;2 ¼
4
3
lSy u2 � uP

y

2 ðtÞ
	 


; ð88Þ

Gy;E ¼ kSyðT � TP
y
ðtÞÞ þ u1Gy;1 þ u2Gy;2: ð89Þ
Here, it is assumed that the transport properties, l and k, are constant and independent of temperature. If this were not the
case, one can use the present strategy to devise a Picard (fixed-point) iteration scheme for the nonlinear implicit system of
equations. This simple iteration approach should converge quickly because the coupling will still be local with the temper-
ature. Furthermore, (62)–(64) and all those derived from these equations need to be rewritten in the appropriate conserva-
tive form.

Next, the semi-implicit time integration method (43)–(46), at the irregular points can be reformulated according to
~kl ¼ Dt Nð~Q lÞ þ Lfdð~Q lÞ þ Lnsð~Q lÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f

þLst ~Q �l þ dl
~kl

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

g

2
664

3
775; ð90Þ
where
~Q l ¼

~Q n l ¼ 1;
~Q n þ b21

~k1 l ¼ 2;
~Q n þ b31

~k1 þ b32
~k2 l ¼ 3;

8><
>: ð91Þ
and
~Q �l ¼

~Q n l ¼ 1;
~Q n þ c21

~k1 l ¼ 2;
~Q n þ c31

~k1 þ c32
~k2 l ¼ 3:

8><
>: ð92Þ
It is possible to rewrite (90) such that the implicit equations are solved explicitly, by introducing
~kl ¼~kf
l þ Dt ~g�1

x Gx
~Q �l þ dl

~kl

� �
þ ~g�1

y Gy
~Q �l þ dl

~kl

� �h i
; ð93Þ
where
~kf
l ¼ Dt Nð~QlÞ þ Lfdð~Q lÞ þ Lnsð~Q lÞ

h i
: ð94Þ
Since not both Px and Py points are always present at all irregular points, the most restrictive, i.e. stiff, terms needs to be
identified explicitly. This can be accomplished by defining ~g�1 as
~g�1 ¼max j~g�1
x j; j~g�1

y j
� �

; ð95Þ
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and ~g ¼ 1=~g�1. Then, the solution of the implicit equations is obtained by elimination, giving
kl;1 ¼
~gkf

l;1 þ Dtl 4
3 axSx u�1 � uP

x

1 ðt�Þ
	 


þ aySy u�1 � uP
y

1 ðt�Þ
	 
	 


~g� dlDt l
q�

4
3 axSx þ aySy
	 
 ; ð96Þ

kl;2 ¼
~gkf

l;2 þ Dtl axSx u�2 � uP
x

2 ðt�Þ
	 


þ 4
3 aySy u�2 � uP

y

2 ðt�Þ
	 
	 


~g� dlDt l
q� axSx þ 4

3 aySy
	 
 ; ð97Þ

kl;E ¼
~gkf

l;E þ Dt u��1 s��1 þ u��2 s��2 þ kðaxSxðT�� � TP
x
ðt�ÞÞ þ aySyðT�� � TP

y
ðt�ÞÞÞ

h i
~g� dlDt kðc�1Þ

q� ðaxSx þ aySyÞ
; ð98Þ
where ax ¼ ~g~g�1
x and ay ¼ ~g~g�1

y , and the intermediate values are given by
u�1 ¼
m�1
q�

; u�2 ¼
m�2
q�

; u��1 ¼
m�1 þ dlkl;1

q�
; u��2 ¼

m�2 þ dlkl;2

q�
; ð99Þ

T�� ¼ ðc� 1Þ E�

q�
� 1

2
u��21 þ u��22

	 
� �
; ð100Þ

s��1 ¼ l 4
3

axSxðu��1 � uP
x

1 ðt�ÞÞ þ aySy u��1 � uP
y

1 ðt�Þ
	 
� �

; ð101Þ

s��2 ¼ l axSx u��2 � uP
x

2 ðt�Þ
	 


þ 4
3

aySy u��2 � uP
y

2 ðt�Þ
	 
� �

: ð102Þ
In addition, by definition, jaxj 6 1 and jayj ¼ 1 or jaxj ¼ 1 and jayj 6 1. Therefore, all the denominators in (96)–(98) are fi-
nite and different from zero.

The procedure to obtain the kl consists of first solving (96) and (97) using the intermediate values, kf
l and u�, followed by

(98) using the second intermediate values, u�� and T��. Because of the particular structure of the Navier–Stokes equations, i.e.
no second-order spatial derivatives in the mass conservation equation, the implicit system of equations induced by the semi-
implicit time integrator can be solved explicitly.

5. Numerical experiments

Numerical experiments using the proposed method and their results are discussed in this section. Firstly, we utilize a
rotating circular cylinder problem to evaluate convergence and conservation properties of the method. This example has
been used in previous investigations of incompressible flows [31]. Secondly, we apply the method to problems for compress-
ible flow around various-shape obstacles at different Reynolds numbers and Mach numbers to investigate the effectiveness
of the method. Comparisons are carried out between existing incompressible, zero Mach number, simulations around a cir-
cular cylinder and compressible simulations using the present method at the low Mach number of 0.05 (based on free-
stream velocity or angular velocity at the boundary of the cylinder). Unfortunately, it is well known that the centered fi-
nite-difference approximation on a co-located mesh does not converge uniformly to the incompressible solution as the Mach
number approaches zero. This is related to the momentum-pressure coupling and it is a well known difficulty of compress-
ible solvers that are not preconditioned for low Mach number flows. This difficulty can be alleviated in several ways, one of
which involve the use of filters to remove the spurious pressure and density oscillations that arise on the 2Dx wavelength, i.e.
checkerboard mode, or the use of a staggered arrangement of variables. Since the purpose of the present method is not re-
lated to issues of low Mach numbers solvers, this problem was addressed, only for the low Mach number case, by adding an
additional stabilizing term to the mass and energy conservation equations of the form � D3q and �=ðc� 1ÞD3p, respectively,
where � is a small number that we set to 0:05ðDxDyÞ3. This is done in the spirit of [15] and it is a well known hyperviscosity
solution to prevent the appearance of high wavenumber oscillations. It is used in the present context to stabilize pressure
oscillations and, at the same time, to keep the amount of numerical dissipation as low as possible. It was verified that the
solution did not change appreciably when � was varied around the presently chosen value. Note that no terms were added
to the momentum conservation equations, which are naturally regularized by the physical viscosity, and therefore no addi-
tional dissipation is added to the kinetic energy of the flow. Furthermore, no regularizing terms were added for the cases
where the Mach number was higher than 0.05. Finally, an application of the method to the scattering of a monochromatic
sound wave by a cylinder is discussed.

5.1. Rotating cylinder

We investigate the flow of a compressible and viscous fluid surrounding a rotating two-dimensional cylinder of diameter
D. In this numerical experiment the fluid domain, X, has dimensions ½0; lx� � ½0; ly� with the cylinder positioned at the center
of X. The cylinder is allowed to rotate only around its center, without translation. The boundary of the cylinder is repre-
sented using 120 linear segments and this discretization is used to identify the irregular points. Initially, both the fluid
and cylinder are at rest. At t ¼ 0, a constant angular acceleration _x ¼ Vo=ðRtcÞ is applied, where Vo is the final (constant)
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tangential velocity at the cylinder surface and R ¼ D=2 denotes the radius of the cylinder. The acceleration lasts one acoustic
time, tc ¼ lx=co, where co ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cpo=qo

p
denotes the speed of sound with po and qo denoting the reference pressure and density,

respectively. After the initial acceleration phase, a constant angular velocity is maintained at x ¼ Vo=R. Comparisons are
made at t ¼ 10lx=co. Slip and adiabatic boundary conditions are used at the boundary of X. No-slip and isothermal boundary
conditions are employed at the cylinder surface. The Reynolds number is defined as Re ¼ qoVoD=l and the Mach number is
defined as M ¼ Vo=co. The Prandtl number was kept constant at 0.7. At low Mach numbers, the leading order solution for the
velocity is given by the tangential momentum balance in the Navier–Stokes equations, according to
Table 1
Error n

Re

10

10

10

100

100

100
q
@Vh

@t
¼ l @

@r
1
r
@

@r
ðrVhÞ

� �
; ð103Þ
with
VhðR; tÞ
Vo

¼
t
tc

t < tc;

1 t P tc:

�
ð104Þ
The time dependent solution of (103) can be obtained by Laplace transform and is given by
Vhðg; sÞ
Vo

¼ 1
g
þ i

psc

Z 1

0

ðescf
2 � 1Þ
f3 e�sf2 K1ð�ifgÞ

K1ð�ifÞ �
K1ðifgÞ
K1ðifÞ

� �
df; ð105Þ
where g ¼ r=R; s ¼ tl=ðqR2Þ; sc ¼ 2ðlx=RÞðM=ReÞ, and K1 denotes the modified Bessel function of the second kind. The mul-
tiplication theorem of Bessel functions [83] shows that the integral in the right-hand side of (105) is purely imaginary, there-
fore, Vh is real, as it should be.

Table 1 shows the error convergence from the different cases considered. The Reynolds number based on the cylinder
diameter was 10 and 100, respectively. A low Mach number of 0.05 was used to compare the solution with the incompress-
ible result of (105). The length of the computational domain was 10 times the diameter of the cylinder (which was verified to
be sufficiently large for the duration of the simulations to have negligible impact on the results). The number of grid points
across the diameter of the cylinder is denoted by Nd ¼ D=Dx, with Dx ¼ lx=Nx and Dy ¼ ly=Ny where Nx;Ny denotes the total
number of grid points across X in the respective directions. In all cases considered here Dx ¼ Dy. The time step size was
determined using the explicit CFL and viscous conditions, independently of gx and gy, such that
Dt ¼min
CFL

ðjujþcÞmax
Dx þ ðjvjþcÞmax

Dy

;
1
2

DN
mmaxðDx�2 þ Dy�2Þ

 !
; ð106Þ
where c ¼
ffiffiffiffiffiffiffiffiffiffiffi
cp=q

p
denotes the local speed of sound, m ¼ l=q is the kinematic viscosity, and the constants CFL and DN were

taken to be 0.8 and 0.7, respectively. The error norms are computed according to
kehk1 ¼max
Iþ

VN
h ðxi; yjÞ � Vhðxi; yjÞ

��� ���; ð107Þ

kehk1 ¼
1

NIþ

X
Iþ

VN
h ðxi; yjÞ � Vhðxi; yjÞ

��� ���; ð108Þ

kehk2 ¼
1

NIþ

X
Iþ

VN
h ðxi; yjÞ � Vhðxi; yjÞ

��� ���2
 !1=2

; ð109Þ
where VN
h denotes the tangential velocity obtained from the numerical solution, Iþ ¼ fi; j 2 ½1;Nx� � ½1;Ny�; xi ¼ Dxði� 0:5Þ;

yj ¼ Dyðj� 0:5Þ : ðxi; yjÞ 2 Xþg and NIþ ¼
P
Iþ1. The convergence rates, p1; p1 and p2, are deduced from the respective rates

of convergence of the errors at two consecutive resolutions, according to
p ¼ logðkehkh
=kehkh=2Þ

log 2
; ð110Þ
orms and convergence rate of the tangential velocity for different Reynolds numbers at the end of the simulations.

Nx � Ny Nd kehk1 p1 kehk1 p1 kehk2 p2

100 � 100 10 1:21 � 10�2 1:02 � 10�4 5:16 � 10�4

200 � 200 20 3:71 � 10�3 1.70 2:60 � 10�5 1.97 1:29 � 10�4 2.00

400 � 400 40 1:20 � 10�3 1.62 9:72 � 10�6 1.42 4:28 � 10�5 1.59

100 � 100 10 1:92 � 10�2 1:42 � 10�4 8:46 � 10�4

200 � 200 20 7:13 � 10�3 1.43 3:29 � 10�5 2.11 2:10 � 10�4 2.01

400 � 400 40 2:01 � 10�3 1.82 1:06 � 10�5 1.63 7:06 � 10�5 1.57
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where h ¼ Dx ¼ Dy. Table 1 shows that the tangential velocity converges at a rate between 1.5 and 2, which is close to the
expected second-order. Fig. 4 shows overlaid tangential velocity isolevels for three different resolutions as well as the ana-
lytical solution. The profiles appear to converge smoothly.

Conservation properties of the method are investigated by considering the evolution of the total mass and linear momen-
tum, defined as
Fig. 4.
broken
points,
interpre

Table 2
Percent

Re

10

10

10

100

100

100
hqi ¼ 1
NxNy

X
I

qðxi; yjÞ; ð111Þ
and
hm1i ¼
1

NxNy

X
I

m1ðxi; yjÞ: ð112Þ
Notice that these definitions include the interior of the cylinder as well (which moves as a solid body and has constant
density). Table 2 shows the total percentage change of mass and linear momentum at the end of the simulations for all Rey-
nolds numbers and resolutions investigated. It is observed that linear momentum is conserved to machine accuracy, as ex-
pected owing to the symmetry of the problem, while mass increases very slowly. These results were obtained at the end of
the simulations, as previously defined, and correspond to a relatively large integration time. For a fixed Reynolds number, the
total mass drift decreases with increased resolution. The smallest mass drifts are observed for the lowest Reynolds number
cases. Note that the mesh sizes are the same in both sets of simulations. The total mass variation with time is affected by the
irregular shape of the interface with respect to the Cartesian grid. Moreover, since there is no explicit boundary condition for
the density (only for the temperature), some variations of the total mass is necessarily observed as the simulation progresses,
i.e. (71) and (72) and discussion associated with these equations. An ideal method should not exhibit any variation of the
total mass in the domain provided the volume over which the mass should be conserved is well defined. In practice, the
small variations observed here appear to be inconsequential in all simulations considered so far.

An additional criteria to consider for the present method is the behavior of the solution as a function of the distance be-
tween the irregular points and the interface. The distribution of irregular points with respect to the cylinder is shown in
Fig. 5, where g (the fraction of a grid spacing where the interface intersects one of the Cartesian lines passing through an
x

y

5 5.2 5.4 5.6 5.8 6 6.2 6.4
5

5.2

5.4

5.6

5.8

6

6.2

6.4

x

y

5 5.2 5.4 5.6 5.8 6
5

5.2

5.4

5.6

5.8

6

Isolines of tangential velocity magnitude for two Reynolds numbers at the end of the simulations in one quadrant of the simulation domain. Thick
line denotes analytical solution and thin red, green and blue lines denote results of simulations with 100 � 100;200 � 200 and 400 � 400 grid
respectively. In all cases, equally spaced isolines of 10% Vo are used, the center of the domain is at (5,5) and the cylinder radius is 0.5. (For
tation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

age change of total mass and total linear momentum at the end of the simulations.

Nx � Ny %hqi hm1i

100 � 100 0.0062 �1:54 � 10�17

200 � 200 0.0014 �2:31 � 10�17

400 � 400 0.0005 �2:39 � 10�17

100 � 100 0.0358 �2:18 � 10�17

200 � 200 0.0055 �8:47 � 10�18

400 � 400 0.0010 �1:91 � 10�17



Fig. 5. Histograms of g ¼ gx or gy (undistinguished) for all three grid arrangements. Linear (a) and logarithmic (b) representations.

Table 3
Convergence and mass conservation results of rotating cylinder at Re ¼ 50 at t ¼ 10lx=co for varying jgjmin. Time step criteria is given by (106), independent of g.

jgjmin kehk1 kehk1 kehk2 %hqi

0.1357 5:47 � 10�3 2:66 � 10�5 1:67 � 10�4 3:02 � 10�3

10�3 4:70 � 10�3 2:23 � 10�5 1:34 � 10�4 1:86 � 10�3

10�4 4:70 � 10�3 2:23 � 10�5 1:34 � 10�4 1:86 � 10�3

10�5 4:70 � 10�3 2:23 � 10�5 1:34 � 10�4 1:86 � 10�3

10�6 4:70 � 10�3 2:23 � 10�5 1:34 � 10�4 1:86 � 10�3
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irregular point) denotes either gx or gy, no distinction is made between the two here. As can be seen, the values of g are
approximately uniformly distributed between �1 and 1 for all cases. Fig. 5(b) shows the histogram of the logarithm (base
10) of jgj. This helps to visualize the tails of the distribution of values of jgj, in particular the small values of jgj that are
responsible for the stiffness of the immersed interface equations. The minimum value observed, jgjmin ¼ 0:0167, appears
in the simulation with the 400 � 400 grid. While this is a small value, a more controlled experiment was designed where
one can explore the behavior of the method for even smaller values of g. Therefore, a new set of simulations at Re ¼ 50 with
a mesh of 200 � 200 grid points is used to systematically vary jgjmin. This is accomplished by shifting the center of the cyl-
inder such that the rightmost boundary sits at a predefined distance from the Cartesian mesh.

Table 3 shows the convergence rates and conservation properties as jgjmin varies from 0:1357 to 10�6. The time steps used
in these simulations was still controlled by (106) and it was independent of jgjmin. The results indicate that no degradation of
the convergence or conservation is observed.

The previous examples were carried out at a low Mach number in order to compare the analytical velocity profile (105),
with the numerical results. Similar results are now described for higher Mach numbers to highlight that the simulation does
not lose stability with increasing Mach number. Fig. 6 shows the variations of the tangential velocity and temperature with
increasing Mach number at Re ¼ 50 and all remaining parameters unchanged with respect to the previous examples.

Finally, we consider a case where the temperature of the cylinder is not constant. The model problem has a cylinder tem-
perature that varies as a function of the cylinder-attached angular coordinate u, in the rotating frame, given by
TbcðuÞ ¼ Toð1þ 0:1 sinðuÞÞ: ð113Þ
In this case, since an analytical solution is not available, the simulation only highlights that the case where the temper-
ature is not uniform can be carried out without modifications. Fig. 7 show temperature isolevels at four different instants of
time. As can be seen, the temperature of the flow around the cylinder is rotating and diffusing away from the surface of the
cylinder as time progresses.
5.2. Obstacles in uniform flow

In this section we detail several simulations of rigid obstacles with simple and complex geometries immersed in an up-
stream uniform flow. Firstly, we consider flow over a circular cylinder and the lift and drag forces are determined at different
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Fig. 6. Effect of Mach number on normalized velocity (a) and temperature (b) profiles for Re ¼ 50, using a mesh with 200 � 200 grid points at t ¼ 10lx=co .

Fig. 7. Isocontours of temperature fluctuation, T � To , for Re ¼ 50;M ¼ 0:05 using a mesh with 400 � 400 grid points.
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Reynolds numbers. These results are compared with available experimental and computational data. Secondly, examples of
systems of two and three cylinders of different shapes are discussed. In these simulations, uniform flow is imposed at the
left-hand side boundary of the domain and non-reflective characteristic boundary conditions are used at the right-hand side
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boundary [84], implemented as described in [80]. Top and bottom boundaries utilize characteristic outgoing boundary
conditions.

Fig. 8 shows vortex shedding off a circular cylinder placed in a uniform stream with Re ¼ q1U1D=l ¼ 100 and
M ¼ U1=c ¼ 0:05, where U1 is the upstream uniform flow velocity, c is the speed of sound, q1 is the upstream density
and D the diameter of the cylinder. The domain size is 25D� 20D and the cylinder is located at x ¼ 10D. A convergence study
was performed to investigate convergence of the Strouhal number, St ¼ fD=U1, the average drag coefficient,
CD ¼ 2Fx=ðDq1U2

1Þ, and peak lift coefficient, CL ¼ 2Fy;max=ðDq1U2
1Þ, with increasing resolution. Averaging is denoted by an
Table 4
Convergence of vortex shedding behind a cylinder at Re ¼ 100.

M D
Dx

St CD CL

Liu et al. [86] 0 0.164 1.35 0.339
Choi et al. [32] 0 81 0.164 1.34 0.315
Kim et al. [89] 0 30 0.165 1.33 0.32
Russell and Wang [90] 0 20 0.169 1.38 0.322
Present 0.05 15 0.168 1.247 0.264

0.05 30 0.168 1.316 0.320
0.05 60 0.168 1.317 0.320
0.25 15 0.165 1.275 0.272
0.25 30 0.164 1.336 0.304
0.25 60 0.168 1.336 0.319

Fig. 8. Vorticity at one instant in time on a cylinder in uniform flow at Re ¼ 100 and M ¼ 0:05.

Fig. 9. Normalized lift and drag coefficients as a function of normalized time, s ¼ tU1=D, for a cylinder in uniform flow at Re ¼ 100 for increasing Mach
numbers.
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overbar in the definition of the streamwise-aligned force appearing in CD. Table 4 shows that the Strouhal number for the
low Mach number cases are in good agreement with previous experimental and numerical results of 0.165 [85,86]. The val-
ues reported by other IBM methods for this flow are also very similar to those obtained here.

Having established the accuracy of the solution we investigate the performance of the method as the free-stream Mach
number is increased from 0.05 (practically incompressible) to 0.75. The latter is close to the maximum Mach number that
can be reached before supersonic flow develops in the domain. Fig. 9 shows lift and drag time histories for a cylinder in a
uniform stream at Re ¼ 100 and Mach number between 0.05 and 0.75.
Fig. 10. Velocity, pressure, temperature and AMR levels at one instant in time for a cylinder in uniform flow at Re ¼ 100 and M ¼ 0:5. Blue, green and red
denote coarse, intermediate and fine meshes, respectively, in subfigure (b). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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In order to conduct more interesting simulations, the method was implemented in a low numerical dissipation adaptive
mesh refinement (AMR) parallel solver [80]. No particular modifications to the core numerics or the hierarchical mesh used
in [80] was required, apart from the change in the time integration method. This change from the strong-stability preserving
Runge–Kutta [87] used previously to the present additive semi-implicit Runge–Kutta does require two additional storage
arrays to maintain kl which is a small additional cost for the capability of incorporating arbitrarily shaped objects in the do-
main. Fig. 10(a) shows an instant in time of velocity, pressure and temperature for a cylinder at Re ¼ 100 and M ¼ 0:5. This
simulations utilized a total of 3 levels of refinement with a coarse mesh using D=Dx ¼ 15 and successive refinements of fac-
tors of 2 between levels. Fig. 10(b) shows the corresponding regions of refinement around the object and wake of the cyl-
inder at this time. The refinement criteria is based on the requirement that the normalized velocity difference, jDukj=U1,
between grid cells should not exceed 0.03. If this condition was not fulfilled at a particular location an additional fine level
is created. Isolevels of the different quantities have been marked with broken lines.

Finally, simulations with multiple objects were carried out to test the flexibility of the method in more complex scenarios.
These simulations correspond to Reynolds number of 200, based on the obstacle’s mean diameter, at the low Mach number
of 0.05. Fig. 11 shows an instantaneous rendering of the vorticity being shed from the objects using a total of three levels of
refinement and equivalent AMR parameters as those of the simulation shown in Fig. 10.
5.3. Viscous scattering of sound

The final example corresponds to the scattering of a monochromatic sound wave in a viscous fluid by a circular cylinder.
This is a classical problem in acoustics (in the inviscid limit) that is modeled presently by combining the embedded geometry
Fig. 11. Vorticity shed from different objects in a uniform stream at Re ¼ 200 and Mach 0.05.



Fig. 12. Scattered pressure wave at Re ¼ 200 (a) and (b), 500 (c) and inviscid (d).
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representation and AMR to achieve as high Reynolds number as practically possible. This is necessary since the proposed
numerical method is not designed to handle inviscid (slip and adiabatic) boundary conditions, which are of mixed type as
opposed to the Dirichlet type used in the present approach. We remark that low-order methods are usually unsuitable
for simulation of acoustic problems due to their poor resolution and dispersion properties. In this example we have used
a large number of grid points to compensate for this deficiency. Moreover, the example below poses demanding tests on
the accuracy of far field boundary conditions.

A monochromatic wave of wavelength k ¼ 20a, where a denotes the radius of the cylinder, traveling from left to right is
simulated in a domain of size ½�240 a;240 a� � ½�80 a;80 a� with the cylinder in the center. The Reynolds numbers consid-
ered are Re ¼ qo2aco=l ¼ 200, and 500, where co denotes the speed of sound and qo the background density. Two coarse
meshes were considered: mesh A with 1536� 512 grid points and mesh B with 3072� 1024 grid points. This corresponds
to approximately 62 and 123 grid points per wavelength, respectively. The apparently large number of grid points is neces-
sary to minimize the relatively poor-dispersion properties of the second-order accurate method. Furthermore, two and three
levels of AMR with refinement factors of two were used in the simulations at Reynolds number 200 and 500, respectively, to
fully resolve the flow around the cylinder. The relative amplitude of the injected sinusoidal pressure wave is Dp=po ¼ 0:014,
where Dp ¼ pmax � pmin and po denotes the reference pressure. The sound (pressure) scattering was determined by subtract-
ing the pressure from each simulation from a baseline simulation with identical parameters that omits the cylinder. This
helps in the comparisons because it removes extraneous effects (although relatively small with respect to the mean pres-
sure) induced by the approximate one-dimensional characteristic boundary conditions used in the simulations of the sound
wave in a finite domain. In this manner, the sound scattering comparisons obtained as the difference between these simu-
lations, with and without the cylinder, cancels some of the perturbations introduced by the numerical boundary conditions



Fig. 13. Pressure wave at Re ¼ 200 without cylinder showing the effect of boundary conditions for coarse resolution simulation at final time.
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and the finite viscosity, which adds a small amount of physical dissipation as the sound wave travels through the large do-
main. Finally, the comparisons are carried out at t ¼ 1000a=co, to allow for acoustic waves generated during the initial tran-
sient to exit the domain completely.

Fig. 12 shows comparisons of the scattered pressure wave for different resolutions and Reynolds numbers at the end of
the simulation time. The isolevels are identical in all subfigures. Fig. 12(a) and (b) explore, for Re ¼ 200, the effect of reso-
lution. Minor effects of resolution are observed in the figures, which only appear exacerbated if one focuses on the location of
some isolevel curves, but overall the difference between the figures is small. Fig. 12(a) and (c), at Re ¼ 200 with two addi-
tional levels of refinement and 500 with three additional levels of refinement, respectively, use the same coarse resolution.
These figures exhibit some minor differences in the wave pattern within this range of Reynolds numbers, suggesting that the
solution should be close to inviscid. Finally, Fig. 12(d) shows the ideal inviscid solution obtained by linearization of the Euler
equations, at the same time as that shown from the simulations. The general solution, valid for any wavelength, is given by
an infinite series of Bessel functions and it is described in detail in [88]. It is observed that the crests and troughs of the sim-
ulated wave are qualitatively in the right location, in particular along the horizontal line intersecting the center of the cyl-
inder. Nevertheless, the viscous solutions are not able to reproduce the observed symmetry of the ideal scattered wave.
Notably, the perturbation ahead of the cylinder occupies a larger region in the simulations in comparison with the region
behind the cylinder. Comparison between Fig. 12(a) and (c) does not indicate that viscous effects may play a role in the dis-
crepancies between the simulation results and the inviscid exact solution. It appears that our approximate characteristic
boundary conditions play a more important role in the results. This is illustrated in Fig. 13 showing the pressure (total) wave
in the domain without the cylinder at the final instant. In this figure, it is clearly observed that the pressure wave is non-
uniformly attenuated as it progresses through the domain. This is caused by accumulations of small reflections out of the
corners of the computational domain that eventually pollute some of the simulation. The overall error is not large since
Dp=po is very small, but the scattered sound is also small and the errors are easily observed when subtracting the incident
wave. Note that it is of course possible to simulate the planar wave almost perfectly by using zero-gradient boundary con-
ditions in the vertical direction when the cylinder is not present. Unfortunately, this shortcut is not useful when the cylinder
is present since the scattered sound produces small, but not negligible, inflows and outflows through the boundary and the
zero-gradient condition is more reflective than our approximate characteristic boundary conditions.

In conclusion, the present method would have to be interfaced with an appropriate, if possible using high-order of accu-
racy, linearized Helmholtz or wave-equation solver in order to recover accurately and efficiently the scattered sound inten-
sity. Unfortunately, this was not the objective of the present study.
6. Conclusions

A new immersed interface method for the simulation of flows governed by the compressible Navier–Stokes equations
is proposed. The approach uses low numerical dissipation centered finite-differences and is not restricted by stiffness
problems produced when the embedded geometry location is too close to the Cartesian grid. The proposed method combines
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first-order spatial derivative operators, derived using the summation-by-parts theory of stable derivative approximations,
with unequally spaced finite-differences for the second-order derivatives and least-squares projection for the mixed deriv-
atives. Stiffness is removed by use of an additive semi-implicit Runge–Kutta method whose solution is explicitly obtained,
resulting in an explicit method. The new low numerical dissipation model introduces desirable properties since artificial dis-
sipation has been removed and now complex geometrical objects can be easily treated in compressible flow simulations.
Moreover, the method was integrated into an existing adaptive mesh refinement framework to allow for high resolution
capability in parallel multiprocessor environments. Verification for convergence, conservation and stability of the method
was investigated for a benchmark problem of a rotating cylinder in quiescent fluid and additional comparisons with exper-
imental and computational results available in the literature are provided for the case of a circular cylinder in a uniform
stream. Examples of compressible flows for Mach numbers up to 0.75 were carried out to assess the flexibility and robust-
ness of the new method. Furthermore, a sound scattering problem was investigated to expose the limits of applicability of
the method in acoustics applications.
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